
The Enlightenment Foundation Libraries
A Big Picture

Gustavo Lima Chaves
glima@profusion.mobi

This work is licensed under Creative Commons Attribution-Share Alike 3.0 License
(http://creativecommons.org/licenses/by-sa/3.0/)

June 28, 2010

http://creativecommons.org/licenses/by-sa/3.0/

The Enlightenment Foundation Libraries
A Big Picture

Contents

1 Introduction . 2

2 The e-libs’ basics . 3

2.1 Evas 3

2.2 Ecore 3

2.3 Edje 4

2.4 Eet 5

2.5 Elementary 6

3 Ecore-evas . 7

4 Evas and its objects . 8

5 Playing Edje with Edje Data Collections . 10

5.1 Macros 11

5.2 Top-level blocks 11

5.2.1 Images 11

5.2.2 Fonts 12

5.2.3 Data 12

5.2.4 Styles 13

5.2.5 Collections 13

5.3 Packing cohesive visual elements together: the group block 14

5.3.1 Parts 15

5.4 Interface objects’ states 16

5.4.1 Sizing and positioning in edje 18

5.5 Edje signals 24

5.6 Programs and transitions 24

5.7 Scripting and edje 26

5.7.1 Edje messages 26

1

The Enlightenment Foundation Libraries
A Big Picture

5.7.2 Embryo 27

2

The Enlightenment Foundation Libraries
A Big Picture

1 Introduction

The Enlightenment Foundation Libraries, or simply EFL, are a set of software libraries that grew
up to support the Enlightenment desktop shell and the applications using its same technology.
They have historically been built with high optimizations in mind, targeted not only to desktop
computers, but also to low-end devices.

In this document a big picture of this set of libraries and their correlation is going to be
presented, so that software developers totally unaware of them can rapidly learn the basics and
start using the EFL.

3

The Enlightenment Foundation Libraries
A Big Picture

2 The e-libs’ basics

EFL developers tend to name their libraries with something beginning with the letter “e”. In
this document we’ll talk about the following ones: evas, ecore, eet, edje and elementary. This
section gives a brief overview of these 5 libraries, before we get a little deeper inside each of
them.

2.1 Evas

Evas is a fundamental piece in the set – it is the canvas library, which manages the graphical
objects one wishes to exhibit and deals directly with back-end engines closer to the hardware
display drivers. Of course, it abstracts any need to know the characteristics of your display
system or which graphics calls are in fact used to draw on the screen.

Unlike other canvas objects (or widgets) provided by most of the graphical user interface libraries
(GUIs) out there, evas is specially powerful. It is a stateful canvas in that it keeps track of
which objects must and mustn’t be rendered on screen. It does the so-called retained mode
drawing, in opposition to the immediate mode drawing. The programmer has no need of
dealing with objects repainting or keeping their state. Evas optimizes the rendering pipeline to
minimize the effort in redrawing changes made to the canvas and so takes this work out of the
programmer’s hand, saving a lot of time and energy.

Evas has no notion of time and animations, things that are made available to the programmer
by combining it with other e-libs.

This library is intended to deal with raster graphics. Its powerful (super and sub-sampled)
smooth-scaling algorithms guarantee fancy graphics even when different sizes of an image are
needed. It ships with loaders of gif, jpeg, png, tiff and xpm image files. It can save them back,
possibly after painting something on top of them or applying one of its transformations, into
jpeg, png and tiff formats. Evas can also draw anti-aliased text, alpha-blend objects and much
more.

Finally, evas supports many different back-end engines. This, paired with its highly optimized
drawing methods, permit that the library can be used on a large variety of systems, including
low-end embedded devices.

2.2 Ecore

Ecore is a like a “swiss knife” library for the e-world. One can resume its purpose as a library
that gives developers higher level interfaces for low-level stuff (and also convenience functions).
It also provides, for example, facilities evas was not meant to have, like event handling and
timers. Moreover, ecore is the library which provides the main loop for the applications using
EFL technology (though one is not restricted to it).

4

The Enlightenment Foundation Libraries
A Big Picture

This library also provides wrappers on top of evas, simplifying a bit the chain of functions needed
to instantiate and manage a canvas. Other facilities found on ecore are sockets abstraction, IPC,
configuration handling, etc.

2.3 Edje

Edje is a special library even between the EFL ones. It is a powerful and pioneer layout engine
and graphical design tool based on evas.

Note:

On the words of its creator:

“Edje is an attempt to find a middle ground between theming and programming
without turning the theme itself into just yet another program.” – Carsten Haitzler
(The Rasterman)

It provides an abstraction layer between the application code and its interface, besides allow-
ing for extremely flexible dynamic layouts and animations. More precisely, it interprets files
compiled from a declarative language which allows one to describe a graphical user interface
without writing a single line of the working programming language’s code. In other words, your
application is split into two parts: a graphical part, which knows nothing about (functionality)
code and the functionality, which knows nothing about its GUI.

This brings more freedom to both programmers and interface designers. Once a contract be-
tween the program’s back-end and its interface is established (which is done mainly in terms of
signals, to be better explained further), developers can easily change the back-end’s functionality
independently of the GUI and vice-versa.

This concept, for ages already supported by the EFL, has more and more drawn people’s
attention and has recently been called declarative user interfaces.

In terms of implementation, one can say that edje is a state machine. When declaring an
interface visual element, the designer describes one or more states that element can be at.
These states can differ in many parameters, for example:

- object’s position and size,

- object’s color and opacity,

- object’s visibility,

- object’s response to input events, etc.

5

The Enlightenment Foundation Libraries
A Big Picture

Naturally, edje holds, internally, a geometry state machine and a state graph of what is visible
(or not), where, at what size, with what colors, etc.

Speaking of input events, a great feature of this library is that one can specify, besides element
states, actions triggered by different input actions and transitions to optionally occur after
them. Input events may be mouse ones (hover, click, etc), signals from the application’s back-
end, etc. There are some built-in transition timelines (being their total time a parameter)
which take one object from origin to target states. Examples of them are: linear, accelerated
and sinusoidal transitions (see section 5.6).

Edje allows for real theming capabilities: applications can have interfaces completely different
one from another and with different behavior, too. One describes an interface in the form of
an edje data collection (EDC), which is a plain text file with simple syntax to describe the
interface’s visual elements and their behavior. This is so that the visual elements’ descriptions,
along with their image sources, when applicable, and the fonts used by text elements are all
packaged together into a single file. This way, whole themes of interfaces can be shipped around
with great facility.

A designer has the ability to animate, layout and control the look-and-feel of any program using
edje as its basic GUI constructor. Naturally, if one needs a more specific element behavior or
look-and-feel, new visual objects can be built from scratch, with the help of a developer, who
will be using evas directly.

2.4 Eet

Eet is a tiny library whose API lets the programmer write an arbitrary set of chunks of data to
a file (optionally compressing them, very much like a zip file) while allowing fast random-access
reading of this file later on. EET files, as they are called, are perfect for storing data that are
written once (or rarely) and read many times, especially when the programmer wants to avoid
the necessity of reading all the stored data at once.

Two common use cases for this library are:

- storing configuration data and

- storing themes.

EDC files are processed by a binary distributed with edje, the edje compiler, which packs the
interface’s description and data altogether in the form of an EET file. People have historically
named these interface files with the .edj extension. For now on, we’ll refer to these specific
EET files as EDJ files.

Besides we cite just these two use cases, many more exist for eet. One can store arbitrary data
chunks at EET files. There are developers storing javascript scripts in it, for example.

6

The Enlightenment Foundation Libraries
A Big Picture

2.5 Elementary

Elementary is a basic widget set library built on top of other e-libs (mainly evas, ecore, and
edje) that is easy to use. It was created, originally, aiming development for mobile touch-screen
devices.

This is just one of the ways, while using EFL technologies, of creating visual elements be-
sides using pure edje (or even pure evas). Elementary provides many built-in widgets to the
programmer, like:

- icons,

- buttons,

- scroll bars,

- labels, etc.

All these widgets are themeable, of course.

Elementary also provides higher level abstractions and control. For example, the library enables
operations which affect the whole application’s window, with functions to lower it, raise it,
maximize it, rotate it and the like. Also, with elementary the user may set the “finger size”
(finger-clickable widgets’ sizes) intended for use on a touchscreen application, affecting all the
widgets with finger interaction.

7

The Enlightenment Foundation Libraries
A Big Picture

3 Ecore-evas

Ecore-evas is one of ecore’s modules you’ll certainly want to use. It is a set of convenience
functions around evas, which save you from lots of low level interaction with drawing engines,
canvas update and maintenance calls and the like.

All graphic engines evas supports have respective high level functions, found at ecore-evas, to:

- instantiate a canvas, bound to that back-end engine, with a given geometry, and

- retrieve the application’s window, if the graphic back-end implements windows.

Besides that, ecore-evas gives you generic canvas manipulation functions, regardless of the engine
being used. For example, you can:

- set callback functions on canvas events like resize, move, gain/loss of focus,

- perform actions on the canvas like move, resize, set the title, set fullscreen mode, etc.

Ecore-evas, finally, integrates the calls of canvas updating (re-calculation of object states and
re-renderization) into ecore’s main loop, so that the user mustn’t deal with it.

8

The Enlightenment Foundation Libraries
A Big Picture

4 Evas and its objects

The basic evas object unit one is going to interact with is the Evas_Object. This is a C opaque
type which represents a generic visual element evas handles and draws. Evas_Objects have,
naturally, a type associated with them, so that specialization is possible.

Evas has a set of built-in object types1:

- rectangle,

- line,

- polygon,

- text,

- gradient and

- image.

The ones which are most used are rectangles, text and images. In fact, with these ones one can
create 2D interfaces of arbitrary complexity and EFL makes it easy!

However, people are not at all limited to these objects. Evas lets you build objects of arbitrary
complexity with the concept of smart objects (SOs). Beginning from a basic Evas_Object,
one can specify a basic interface to this new object (function pointers like add, del, move,
resize, show, etc.) that form the common set of evas interaction routines over its objects.
More importantly, SOs can have other objects as their children. Smart objects’ behavior can
be so that the outer operations executed on them reflect on a custom manner over each of the
child objects.

Besides having to be built a little differently than simple built-in objects, smart objects end up
with the same opaque type for use by the programmer: Evas_Object. When building a widget
set, programmers have this instantiation steps hidden away from the API users, so that the
creation of evas smart objects end up as simple as the base ones (just one function call).

Evas comes with three built-in smart object types, whose descriptions follow.

Box Objects A box container is a smart object intended to have child elements, displaying
them at sequential order. It can layout the child elements in various different ways,
though. It has, in its API, functions to set the desired layout, with the possibility of using
layouting functions other than the built-in ones.

Table Objects A table container is a smart object also intended to have child elements, dis-
playing them in a table (or grid) form. Again, one can choose between some built-in
layouts, but there is no support for custom layouts for these objects.

1Actually there are two implementations of gradients and an object for multi-line text entries, too.

9

The Enlightenment Foundation Libraries
A Big Picture

Edje Objects This is how, at programming level, edje and evas fit together. Visual elements
whose appearance and behavior are controlled by edje are nothing more than evas smart
objects. Edje encapsulates all the instantiation steps of these objects inside itself. We’ll
see, further, that after instantiation, an edje (smart) object must have an EDJ file set to
it. This operation also requires that a group2, declared inside that EDJ, is associated
with this object. This group tells about all of the child elements this edje object has.
These can be any evas object, including the smart ones (note the recursive aggregation
possibilities, here).

Elementary’s widgets, as one might expect, are also evas smart objects.

Finally, any Evas_Object may have hint fields set. Their objective is to guide the e-libs’
functionality in some way while layouting and displaying that object. These hints may affect,
for example:

- object sizes (both horizontal and vertically),

- object alignment inside a container and

- object padding.

Hints are not always enforced (and may be treated just like hints, then). Actual sizes of an
object, for example, are properties separate from the size hints. The latter will never be used
in calculations which involve the object’s sizes.

SOs may implement any custom behavior for the values they get from these fields. For example,
box objects use alignment hints to align its lines/columns inside its container, padding hints to
set the padding between each individual child, etc. Edje uses size hints to layout its objects,
too. We’ll see, further, that edje exposes some of these hint fields at the EDC language.

2“Groups”, as will be explained further, are declaration blocks of edje data collections which pack together
visual elements, or “parts”.

10

The Enlightenment Foundation Libraries
A Big Picture

5 Playing Edje with Edje Data Collections

We shall begin a deeper study of edje concurrently with the presentation of the language it
interacts with. As previously said, the way one describes, to edje, a graphical user interface
is through a simple declarative language. A text file is written containing (possibly) several
sections, which can describe:

- the images and fonts to be used in the interface,

- what visual elements should the interface have and how they should be laid out,

- actions (or “programs”) to occur when the interface is interacted with.

Programs can be further supplemented by employing scripting languages, which add some
programability to the interface’s behavior3.

These text files, which we call edje data collections, are commonly named with the .edc exten-
sion. They are not parsed at this form at run time, though. They must be previously compiled
into a binary, more succinct form, which includes the binary blobs of the images, the fonts,
etc. As said before, all the interface’s descriptions and data are packed together in an EET file,
which is customarily named with the .edj extension. EDJ files are the output of the edje_cc
compiler, whose basic invocation is something like:

edje_cc input_file.edc output_file.edj

At run-time, the application loads the EDJ file(s) through edje’s API. Then, edje automatically
generates the evas objects necessary to display the interface.

Because of the great simplicity in having all the interface information in only one file, changing
an EFL-based application’s theme is a mere question of loading it with a different EDJ file.
These interchangeable interface versions must only adhere to the same “contract”, that is, the
way they communicate with the software’s back-end. For this reason, people in the e-world often
call EDJ files directly with the term theme. We are going to use these terms interchangeably
here, too.

The syntax for EDC files follows a simple structure of brace-enclosed blocks that can contain
properties, more blocks, or both. We shall, now, describe the main building blocks of this
language. For each block, we give an example of use at the beginning of its section.

A thorough description of this language can always be consulted at the Edje Data Collection
Reference web page, found at http://docs.enlightenment.org/auto/edje/edcref.html.

3This topic will be readdressed later.

11

 http://docs.enlightenment.org/auto/edje/edcref.html

The Enlightenment Foundation Libraries
A Big Picture

5.1 Macros

edje_cc uses the C pre-processor to expand macros. Then, all if its macros may be used, like:

- #define

- #include

- #ifdef/#endif, etc.

5.2 Top-level blocks

The main top level blocks which can go into an EDC file are the ones declaring:

- images,

- fonts,

- data (in string form),

- styles and

- collections.

When declared globally, they are visible throughout the whole edje data collection. Most of
them can be defined at more restricted scopes, which can be more convenient in some cases.

5.2.1 Images

images {
image: "filename1.ext" COMP;
image: "filename2.ext" LOSSY 99;

}

The images block is used to list each image file that will be used in the theme along with its
compression method (if any). This information block, besides the EDC file’s top level, can occur
inside lower level blocks, easing the maintenance of the file list when the theme is split among
multiple files4.

The general rule to include each image is:

image: "[path_to_image_file]" [compression_method] [compression_level];
4Remember the #include macro.

12

The Enlightenment Foundation Libraries
A Big Picture

The full path to the directory holding the images can be defined later with edje_cc’s “-id”
option. These image files must match one of the types evas was compiled with support to.
Usually png and jpeg formats are supported, but it depends on how evas was compiled.

The compression methods may be the following:

RAW uncompressed,

COMP lossless compression and

LOSSY [0-100] lossy compression with quality from 0 to 100.

5.2.2 Fonts

fonts {
font: "file_name1.ext" "font_alias";
font: "file_name2.ext" "other_font_alias";

}

The fonts block is used to list each font file with an alias used later in the theme, besides
including the font itself into it. Similarly to the images one, fonts blocks may be included
inside other blocks. The full path to the directory holding the fonts can be defined later with
edje_cc’s “-fd” option.

Evas (and consequentially edje) can be compiled with fontconfig support. When it’s done,
system fonts may be accessed by name and style parameters, like in “Sans Serif:style=Bold”.

5.2.3 Data

data {
item: "key" "value";
file: "other_key" "file_name.ext";

}

The data block is used to pass arbitrary parameters (in the form of strings) from the theme
to the application. This can be useful, for example, in a scenario where the software back-end
programmer had in mind more them one GUI schema, being them discrepant to the point that
visual elements (which translate, in edje, to groups and parts, as will be further explained) exist
in one of them but not on the other. The themes could signal that in the form of a data field,
and the back-end would them interact with the right visual parts for every case.

The properties defined for this block have two possible forms:

item: "[key]" "[value]"; This defines a new data item whose value will be the string spec-
ified in the value field.

13

The Enlightenment Foundation Libraries
A Big Picture

file: "[key]" "[filename]"; This defines a new data item whose value will be the contents
of the specified file formatted as a single string of text. Naturally, this property only works
with plain text files.

This block may also occur inside group blocks, thus, having only that scope.

5.2.4 Styles

styles {
style {

name: "style_name";
base: "font_size=14 color=#ffffff valign=baseline";
tag: "br" " \n";

}
}

The styles block contains a list of one or more style blocks, which are used to create style
tags for advanced TEXTBLOCK formatting.

TEXTBLOCKs are one type of visual elements native to edje which, naturally, exhibit text. We’ll
get back to them further in this text.

The properties to be filled at a style block are:

name: "[style_name]"; The name of this style, to be referenced later in the theme.

base: "[style_properties_string]"; The default style properties that will be applied to
the complete text. The syntax of this string is going to be presented further.

tag: "[tag_name]" "[style_properties_string]"; Style to be applied only to text be-
tween tags in the form <tag_name>, </tag_name>.

The styles block can also occur inside lower level blocks.

5.2.5 Collections

collections {
images { /* . . . */ }
fonts { /* . . . */ }
styles { /* . . . */ }

group { /* . . . */ }
}

14

The Enlightenment Foundation Libraries
A Big Picture

The collections block is used to group images, fonts, styles and group blocks altogether,
defining a “groups scope”. Additional collections blocks do not prevent overriding of groups
with equal names, though.

5.3 Packing cohesive visual elements together: the group block

group {
name: "name_used_by_the_application";
alias: "another_name";
min: 100 200;
max: 100 9999;

data { /* . . . */ }
script { /* . . . */ }
images { /* . . . */ }
fonts { /* . . . */ }
styles { /* . . . */ }

parts { /* . . . */ }
}

A group, broadly, defines the contents of an edje smart object. An edje SO, which is a very
elaborate kind of SO, may correspond to a GUI’s whole screen, a widget, or simply a part of a
screen. The child elements of an edje object are declared as EDC parts. All of evas’ built-in
objects are supported, obviously, and so are smart objects. Actually, a part may be another
group itself, reflecting on edje data collections the recursive object aggregation possibilities evas
gives us.

Being an edje object a really smart one, in what it has edje’s state machine supporting it, one
can declare, at EDCs, programs. As said before, these are actions occurring after user (or
back-end) interaction with the visual objects composing the edje SO. The programs block is
presented at section 5.6, while the script one is explained at section 5.7.

Some properties one can define at a group are:

name: "[group_name]"; The name that will be used by the application to load the resulting
edje object or by the EDC writer himself, when nesting groups. If more than one group,
with the same name, exist in an EDC file, the last one’s definition is going to override
the others’.

alias: "[additional_group_name]"; Additional name to serve as this group’s identifier.
Defining multiple aliases is supported.

min: "[width]" "[height]"; The size hints for the minimum size the container of the de-
clared parts may have.

max: "[width]" "[height]"; The size hints for the maximum size the container of the de-
clared parts may have.

15

The Enlightenment Foundation Libraries
A Big Picture

5.3.1 Parts

parts {
images { /* . . . */ }
fonts { /* . . . */ }
styles { /* . . . */ }

part {
name: "part_name";
type: IMAGE;
clip_to: "another_part";

description { /* . . . */ }
}

programs { /* . . . */ }
}

parts serve as descriptions of the basic visual elements of an edje object. For example, a part
could describe a line in a border or a label on a button. As you see, parts must occur inside a
parts block.

Because these are the building units of a GUI in edje, they have a significant number of config-
urable properties and sub-blocks. We are going to pass through the most basic ones, here, so
that you can get started at using the EFL.

Some properties one can define at a part are:

name: "[part_name]"; The symbol by which to reference this element from inside the edje
data collection (most probably by programs) or, in some cases, from the application itself.
This name must be unique within the group.

type: "[TYPE]"; Here one sets the type of the visual element from among the available ones5.
The valid types are:

- RECT
- TEXT
- IMAGE
- SWALLOW
- TEXTBLOCK
- GRADIENT
- GROUP
- BOX
- TABLE

5By default, a part is of type IMAGE.

16

The Enlightenment Foundation Libraries
A Big Picture

These are, not surprisingly, the evas objects we have previously presented. We’ll come
back to the SWALLOW part type and concept later in the document.

clip_to: "[another_part_name]"; By setting this property, evas only renders the area of
this part that coincides with the clipper container. Overflowing content won’t be displayed.

Clipper rectangles are a very common object in interface implementation. They are used to
hide totally or partially any object at a given context. In edje, clippers are simple RECT objects.
When one declares the first object whose clip_to property points to it, edje treats it specially.
When visible, they won’t actually be drawn. Their clipped objects, if visible, will have their
sub-areas which coincide with the clipper’s area drawn with their color modulated by the
clipper’s one. If a clipper is not visible, the objects clipped to it will not have the coinciding
sub-areas drawn. We talk about objects’ visibility and color at section 5.4.

The order in which parts are declared inside a group is very important. It defines object
stacking for the interface being declared: when a part is written, it will be placed on top of all
the others whose blocks appear before in the EDC file. Clipper logic bypasses it: objects that
are clipped can be declared after their clippers and they’ll still be clipped.

Lastly, edje allows one to build scalable interfaces. This is a powerful feature that comes
in handy when, for example, we have to ship different sizes of the same interface (targeted at
different screen sizes). This scaling could be based, also, on the screen DPI of that devices. The
“finger size” property elementary exposes makes use of edje’s scaling API functions, as some
might have thought.

The way one tells edje whether and how to scale the interface is by beans of scale factors.
These are float numbers which multiply some objects’ sizes. Scaling affects the values of min/max
part properties and font sizes, for example. There is a global scaling factor, which will affect
all edje objects, and a per evas object one – the individual scaling factor. If the latter is set,
it overrides the former’s effect. This is so that different visual objects may scale with distinct
proportions. The scaling factors are set through edje’s API.

Besides giving the programer/designer this possibility, it also lets us be selective on what is
going to be scaled. Some visual elements may not look good scaled, like a button border, for
example. If only the button’s contents get larger, it may look better. They way we tell edje
which objects to scale or not is by this part property:

scale: "[1 or 0]"; Specifies whether the part is scalable or not, being the default value 0
(not scalable).

The only (new) block occurring inside a part we’re going to describe is the description one.

5.4 Interface objects’ states

17

The Enlightenment Foundation Libraries
A Big Picture

part {
description {

inherit: "another_description" 0.0;
state: "description_name" 0.0;
visible: 1;
min: 0 0;
max: -1 -1;
color: 255 0 0 128;

rel1 { /* . . . */ }
rel2 { /* . . . */ }

}
}

Every part can have one or more description blocks. With them, one defines the states a
part can be at6, each state having its own layout and style properties. From now on, you can
think of a part state every time we mention the term “description” (except when the context
tells us differently).

This EDC block has lots of properties, being the main ones those that follow:

state: "[description_name]" "[an_index]"; This is the symbol to identify a description
inside a given part. Multiple descriptions are used to declare different states of the same
part. For a button, for example, there could be states matching contexts like “clicked”,
“invisible”, etc. The description_name string actually defines a “description namespace”.
A complete state identifier must contain, also, a float number, ranging from 0.0 to 1.0.
This schema just adds the possibility of simpler naming when one deals with really similar
states.
All parts must have a description named “default 0.0”, which edje takes as the initial
state. If not explicitly declared, edje creates this state for the part, with default properties.

inherit: "[another_description_name]" "[another_description_index]"; This is an op-
tional property by which one makes a state inherit another states’ properties, with the
possibility of overriding any of them. It exists to reduce the amount of necessary code for
simple state changes.
Because of the way it is implemented7, the correct usage of this property is to declare it
right after the state one, only once per description, naturally.

visible: "[0 or 1]"; Takes a boolean value specifying whether the part is visible (1) or not
(0) at this state, being the former the default value. Non-visible parts do not emit signals
(see section 5.5).

min: "[width]" "[height]"; The size hints for the minimum size this part may have at this
state.

6The transitions we have talked about take parts from a given state to another one.
7Other properties are overridden at the time this property is parsed, at compile time, with no dependency

resolution.

18

The Enlightenment Foundation Libraries
A Big Picture

max: "[width]" "[height]"; The size hints for the maximum size this part may have at this
state.

Note:

For parts, a way of fixing their sizes (only subject to scaling to have sizes changed)
is to declare their min size hints identically to the max ones.

color: "[red]" "[green]" "[blue]" "[alpha]"; Sets the “main” color to the specified
RGB (and alpha channel) values, which range from 0 to 255. For transparency, the
former means totally trasparent, while the latter means opaque.
Usually you’ll use this attribute for TEXT and RECT objects’ states, where the “main” color
is their unique one. If set for objects which themselves have colors, like the IMAGE one,
those colors get modulated by this one. For rectangles, the default value of this property
is “255 255 255 255” (opaque white).

Note:

The most common use of clippers is to only hide things, not changing their colors
when they must be shown. To get this behavior, the clipper rectangle’s color must
be set to opaque white, which is the neutral element in color multiplication. This
justifies the default value for a RECT’s color.

5.4.1 Sizing and positioning in edje

% TODO: place a "to:" property in the example

description {
rel1 {

relative: 0.0 0.0;
offset: 0 0;

}
rel2 {

relative: 1.0 1.0;
offset: -1 -1;

}
align: 0.5 0.5;

}

The reader may have noticed two new EDC blocks occurring inside the description block’s
example snippet: rel1 and rel2. These are EDC blocks you’ll use a lot when writing an edje

19

The Enlightenment Foundation Libraries
A Big Picture

interface. That is because it’s with them one describes, to edje, the size and position of the
parts at a given state.

rel1 and rel2 specify, respectively, the coordinates of the top left and the bottom right
corners of the part’s container relatively to another objects’ top left coordinate. This
reference object may be the enclosing group’s container or any other part’s container, when
convenient (given that it’s a part in the same group as the one in question). The area defined
by a container is, normally, exactly the area an object will occupy at a given state.

These are the properties of these blocks:

to: "[another_part_name]"; Makes the part’s corner to be positioned relatively to an-
other part’s top left one. This affects the behavior of the relative property.
By default (if there’s no explicit “to” property), the corner will be relative to the enclosing
group’s (top left) one.

relative: "[x_axis_relative]" "[y_axis_relative]"; This property specifies, for each
axis, how much of the relative “to” object’s size, in that axis, edje must sum, from the
origin corner, in order to place this part’s corner. These quantities (or distances) are
given as percentages8, which, at the end, translate to an integer number of pixels. If
not set, it is assumed that this property has the values “0.0 0.0”, for rel1 blocks, and
the values “1.0 1.0”, for rel2 ones.

offset: "[x_axis_offset]" "[y_axis_offset]"; This property gives quantities to sum from
the origin corner’s coordinates, for each axis, besides the amount specified by the
relative property’s logic, to place this part’s corner. The quantities here, though, are
absolute (integer values, naturally). If not set, it is assumed that this property has the
values “0 0”, for rel1 blocks, and the values “-1 -1”, for rel2 ones.

When placing an object on the canvas, edje gives us the possibility of relativizing it indepen-
dently for each axis. When this is desired, the “to” property must be exchanged for one (or
both) of the following ones:

to_x: "[another_part_name]"; When set, this property will make edje to consider the (top
left) corner belonging to the object named “another_part_name” as the the origin one,
when applying the relative block’s functionality, but just for the x axis.

to_y: "[another_part_name]"; The same said for to_x, but applied to the y axis.

If just one of the two descriptions above are declared, edje will use the enclosing group’s top
left corner to the calculations on the missing axis.

8Actually, they are not strictly percentages, as any float number, negative or positive, will do. Edje will
multiply this value with the corresponding size. When negative, it’ll mean going leftwards, on the x axis, and
going upwards, on the y axis.

20

The Enlightenment Foundation Libraries
A Big Picture

rel1

"origin"

0.25

"origin"

0.25
0.0

0.0

rel2

rel1

"origin"

0.5

0.5
0.0

0.0

rel2

rel1

"origin"

1.0

1.0
0.0

0.0

rel2

rel2

0.75

0.0

1.0

1.0 "origin"

rel2

0.25

0.0

0.75

1.0

"origin" 0.5

0.0

rel21.0

rel1

rel1

rel1

1.0

Figure 1: Here, we have six situations of the red object being placed relatively to the blue one, illustrating
the use of the relative property.

21

The Enlightenment Foundation Libraries
A Big Picture

rel1

rel2

"origin"
0.5, 10 0.9, 0

0.5, 0

0.8, 0

Figure 2: One more positioning of the red rectangle relative to the blue one. Black dots represent where
the relative property would take to (for each axis), while the purple ones represent the fixed
offset added by the offset property. If they are too close one to each other, a two-colored
dot is shown.

rel1

rel2

"origin Y"

-1.0, -20 0.0, -20

0.5, 12

1.0, -1

"origin X"

Figure 3: Now the to_x and to_y options are exemplified, together with a negative “percentage”.

22

The Enlightenment Foundation Libraries
A Big Picture

Note:

It is important to highlight that rel1 and rel2 give the placement of the part’s
corners in pixel coordinates. However, the relative property deals with part
sizes. Because pixels are indexed starting from zero, you’ll commonly see and use
offset corrections on rel2 blocks. The code snippet which opens section 5.4.1
is a common EDC idiom: a part’s state in which it will have the exact size of its
enclosing group. This also justifies the default offset property values for rel2
blocks.

Figure 1 shows the use of the relative property. Figures 2 and 3 illustrate a more elaborate
use of the rel1/rel2 blocks. You could also think of a corner’s final pixel coordinate tuple as
a simple account:

x_dest = x_orig + x_axis_relative * x_width + x_axis_offset
y_dest = y_orig + y_axis_relative * y_height + y_axis_offset

We left one of the description’s properties to be presented after the ones you have seen because
it relates specifically to parts positioning:

align: "[x_axis_alignment]" "[y_axis_alignment]"; Edje objects will have their sizes
limited by the ones declared at the min/max properties, if they are set. However, every
part has a container, which is the area reserved for by the rel1/rel2 declarations. When
not limited by size hints, the parts will have the exact sizes of these containers. But if they
have those limits set, there may be space left over or lacking in these containers. These
are the contexts for which the align property apply. This property will place the part
relatively, along both axis, inside its container, when it can’t have the actual container’s
size.
The values may range from 0.0 to 1.0 and the default value is “0.5 0.5”.

An account, which gives the coordinates of the top left pixel of a part being placed with
alignment may help to figure out the align property’s behavior:

x_dest = x_orig + (container_width - part_width) * x_axis_alignment

y_dest = y_orig + (container_height - part_height) * y_axis_alignment

Figure 4 helps to understand it, too.

23

The Enlightenment Foundation Libraries
A Big Picture

0.0

0.0

0.5 1.0

1.00.5

rel1 rel1 rel1

rel2rel2rel2

rel2 rel2 rel2

rel1 rel1 rel1

Figure 4: The top row shows a (red) object whose minimum size is bigger than its respective container.
The numbers below it illustrate its placement, relative to the container, for those three x axis
alignment values. The bottom row illustrates, analogously, the case in which the object’s
maximum size is smaller than the container’s. For all the examples, the alignment in the y
axis is zero.

24

The Enlightenment Foundation Libraries
A Big Picture

5.5 Edje signals

Edje signals are pieces of information transiting back and forth the application’s code and its
interface and also inside edje, internally. They extend the possibilities of interfacing with this
library, beyond its API.

In terms of implementation, they are merely function callbacks with a defined signature. It
includes two string arguments, which we call emission and source.

The signal’s emission string must tell what the signal means in some way. For example,
“mouse,in” would be suitable to indicate the event of the mouse cursor being over a given
interface object. It is common practice to use this kind of syntax for the emission string:
incrementally refined information tokens separated by commas.

Each signal must come from some place, be it a part, a program (explained at section 5.6) or
the the application’s back-end. The place from where a signal comes is all the source string is
about. If a user left clicks on an image element whose part is named “button”, a signal with
emission string “mouse,clicked,1” and source string “button” is generated from that part.
This is an example of an edje’s internal signal. Other contexts at which the library emits
signals are:

- when a theme is loaded,

- when the mouse cursor moves over an object,

- when an object is resized, moved, etc.

The way an application’s back-end receives signals from its interface is by registering to them.
In C, this is done by the edje_object_signal_callback_add() edje’s API function.

5.6 Programs and transitions

parts {
programs {

program {
name: "program_name";
signal: "signal_name";
source: "part_name";
action: STATE_SET "state_name" 0.3;
transition: LINEAR 0.5;
target: "another_part";
target: "and_another_part";
after: "another_program_name";
after: "and_another_program_name";

}
}

}

25

The Enlightenment Foundation Libraries
A Big Picture

Programs, broadly, define how your interface reacts when it is interacted with. This interaction
may be in the form of user input, signals emitted from the application’s back-end or internal
edje signals. In fact, user input is translated, by edje, into edje signals too, so that most of the
interaction with an edje interface, if not directly made by edje’s API, is by means
of edje signals.

Programs are one of the ways of changing edje objects’ states. Between other possible actions,
programs may also emit signals, like previously said.

The main properties one can set at this block are:

name: "[program_name]"; The program’s unique identifier.

signal: "[emission_string]"; Programs may be triggered by signals, be they internal or
sent from the application’s code. When this possibility of invocation is desired, this is
the property which must be filled. The arriving signal’s emission string must match the
“emission_string” one in order to the program to run.
These signal name strings may be globbed with “*” wildcard characters. For example, if
we have “mouse,clicked,*”, clicking any mouse button will rise signals that match this
pattern and, thus, start the program.

source: "[source_string]"; More precisely, the source property’s string will be paired with
the “emission_string” one at the time edje tries to match the arriving signal with the
one the program is triggered with.
These signal source strings may be globbed like the emission ones. For example, if we have
“button-*”, signals from any part or program whose name is prefixed with that string
are accepted (if their emission strings match, too).
If left empty, this property will implicitly contain the empty string.

action: "[type]" "[param1]" "[param2]"; Programs may provoke actions. The main
ones, which were already mentioned, are to change objects’ states and to emit signals.
Here goes the syntax for these two contexts:

action: STATE_SET "[state_name]" INDEX; Take the target parts to the named state.
action: SIGNAL_EMIT "[emission]" "[source]"; Emit the given signal.

transition: "[type]" "[duration]"; If the program has the STATE_SET action, edje gives
the possibility of gradual “mutation” of the visual object from initial to final states. The
individual steps can occur, through time, with different built-in patterns. These patterns
are what we call edje transitions. Their names, listed below, must go into the type field,
while at the duration one a float number must be given. This is the number of seconds
the transition will take.

LINEAR The “frames” will be displayed with equal time.
SINUSOIDAL The rate of frame displaying changes in a sinusoidal fashion, i. e., faster,

slower, then faster again.

26

The Enlightenment Foundation Libraries
A Big Picture

ACCELERATE Frame times always decreasing during the transition.
DECELERATE The opposite of the last type.

target: "[target_part]"; If the program has the STATE_SET action, this is the property
with which one specifies a part to act upon. Multiple target parts may be declared (with
multiple target entries in the program). SIGNAL_EMIT actions do not have target parts,
naturally.

after: "[program_occurring_after]"; This is a way of chaining programs sequentially.
This comes in handy when, for example, you have to perform more the one action at a given
interaction context. The program whose name matches the program_occurring_after
string will start as soon as this one ends. Multiple after statements may be specified per
program and all of them will run in parallel.

5.7 Scripting and edje

We’ll give, now, a few words on how edje relies on scripting environments to supplement the
capabilities of an edje object’s behavior. This section will probably need updates soon, because
these scripting environments have been worked on9.

We start this section by presenting the way scripts are invoked externally from edje objects.

5.7.1 Edje messages

At the beginning of section 5.6, there is a reason why we’ve said that most of the interaction
with edje interfaces occur in that forms. There is a third possibility: edje messages.

Messages differ from signals in (at least) two ways:

- They are unidirectional. Signals, when emitted from edje, can be caught inside it and
trigger programs, besides being caught from the application back-end, when registered
to. It works analogously, when the back-end is emitting a signal. Messages, on the other
hand, are meant to be passed in only one of those directions.

- They may carry more types of data, besides strings, like integer and float numbers.

At the application back-end’s side, messages will be processed if (message) handler functions
are set for edje objects. At the interface’s side, messages must be handled by edje’s scripting
environment.

9Lua scripting inside edje is going to be working shortly.

27

The Enlightenment Foundation Libraries
A Big Picture

5.7.2 Embryo

The edje library has, as dependency, a small library called embryo. Embryo implements a
scripting language, which we call by this same name, with C-like syntax. It was based on
SMALL, which is now called Pawn. Embryo gives us some built-in functions and a way of
defining small functions inside EDC files. These functions are the contents of the script
blocks.

The run-time environment provided by embryo is totally sandboxed. This limits its interfacing
language to act only upon interface elements, basically.

Besides occurring at group scopes, where message handler functions must be declared,
when applicable, script blocks may also occur inside programs. The code snippet which follows
illustrates this use.
program {

name: "part_name";
signal: "show";
source: "*";
script {

set_int(is_mouse_down , 0);
set_int(enabled, 1);

}

We’re not going into embryo language’s details here. For this context, all we say is that set_int
is embryo’s way of assigning to a global integer variable, which in this case should have been
declared at a group level script block. As you see, embryo facilitates the task of keeping state
in the interface.

When a program has such block, it mustn’t have the action one. The functions listed at this
script block form the program’s action in this case. Naturally, besides setting (or referencing)
global variables, global functions could be used.

28

	Introduction
	The e-libs' basics
	Evas
	Ecore
	Edje
	Eet
	Elementary

	Ecore-evas
	Evas and its objects
	Playing Edje with Edje Data Collections
	Macros
	Top-level blocks
	Images
	Fonts
	Data
	Styles
	Collections

	Packing cohesive visual elements together: the group block
	Parts

	Interface objects' states
	Sizing and positioning in edje

	Edje signals
	Programs and transitions
	Scripting and edje
	Edje messages
	Embryo

